

Welcome to ml2p’s documentation!

Contents:

	Overview

	Installation

	Tutorial
	Setting up your project

	Initialize the ML2P project

	Creating a training dataset

	Training a model

	Deploying a model

	Security considerations

	Working with models locally

	Reference Guide
	ML2P CLI Reference

	ML2P Docker CLI Reference

	Library Reference

	History
	0.3.5 (2023-05-16)

	0.3.4 (2023-02-24)

	0.3.3 (2023-02-17)

	0.3.2 (2023-02-17)

	0.3.1 (2023-02-17)

	0.3.0 (2023-02-16)

	0.2.4 (2022-02-21)

	0.2.3 (2021-07-12)

	0.2.2 (2021-05-18)

	0.2.1 (2021-05-13)

	0.2.0 (2020-09-16)

	0.1.5 (2020-06-12)

	0.1.4 (2020-02-21)

	0.1.3 (2020-02-20)

	0.1.2 (2020-01-23)

	0.1.1 (2020-01-22)

	0.1.0 (2019-10-22)

	0.0.9 (2019-10-15)

	0.0.8 (2019-09-11)

	0.0.7 (2019-08-29)

	0.0.6 (2019-08-29)

	0.0.5 (2019-07-23)

	0.0.4 (2019-06-26)

	0.0.3 (2019-06-26)

	0.0.2 (2019-05-24)

	0.0.1 (2018-10-19)

Indices and tables

	Index

	Module Index

	Search Page

Overview

Todo

Write the overview.

Installation

Install ML2P with:

$ pip install ml2p

And you’re ready to go!

Tutorial

Welcome to ML2P! In this tutorial we’ll take you through:

	setting up your first project

	uploading a training dataset to S3

	training a model

	deploying a model

	making predictions

Throughout all of this we’ll be working with the classic Boston house prices
dataset that is available within scikit-learn [https://scikit-learn.org/].

Setting up your project

Before running ML2P you’ll need to create:

	a docker image,

	a S3 bucket,

	and an AWS role

yourself. ML2P does not manage these for you.

Once you have the docker image, bucket and role set up, you are ready to
create your ML2P configuration file. Save the following as ml2p.yml:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15

	project: "ml2p-tutorial"
s3folder: "s3://your-s3-bucket/"
models:
 boston: "models.BostonModel"
defaults:
 image: "XXXXX.dkr.ecr.REGION.amazonaws.com/your-docker-image:X.Y.Z"
 role: "arn:aws:iam::XXXXX:role/your-role"
train:
 instance_type: "ml.m5.large"
deploy:
 instance_type: "ml.t2.medium"
 record_invokes: true # record predictions in the S3 bucket
notebook:
 instance_type: "ml.t2.medium"
 volume_size: 8 # Size of the notebook server disk in GB

The yellow high-lights show the lines where you’ll need to fill in the details
for the docker image, S3 bucket and AWS role.

Initialize the ML2P project

You’re now ready to run your first ML2P command!

First set the AWS profile you’d like to use:

$ export AWS_PROFILE="my-profile"

You’ll need to set the AWS_PROFILE or otherwise provide your AWS credentials
whenever you run an ml2p command.

If you haven’t initialized your project before, run:

$ ml2p init

which will create the S3 model and dataset folders for you.

Once you’ve run ml2p init, ML2P have will created the following folder
structure in your S3 bucket:

s3://your-s3-bucket/
 models/
 ... ml2p will place the outputs of your training jobs here ...
 datasets/
 ... ml2p will place your datasets here, the name of the
 subfolder is the name of the dataset ...

Creating a training dataset

First create a CSV file containing the Boston house prices that you’ll be
using to train your model. You can do this by saving the file below as
create_boston_prices_csv.py:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19

	# -*- coding: utf-8 -*-

""" A small script for creating a Boston house price data training set.
"""

import pandas
import sklearn.datasets

def write_boston_csv(csv_name):
 """ Write a Boston house price training dataset. """
 boston = sklearn.datasets.load_boston()
 df = pandas.DataFrame(boston["data"], columns=boston["feature_names"])
 df["target"] = boston["target"]
 df.to_csv(csv_name, index=False)

if __name__ == "__main__":
 write_boston_csv("house-prices.csv")

and running:

$ python create_boston_prices_csv.py

This will write the file house-prices.csv to the current folder.

Now create a training dataset and upload the CSV file to it:

$ ml2p dataset create boston-20200901
$ ml2p dataset up boston-20200901 house-prices.csv

And check that the contents of the training dataset is as expected by
listing the files in it:

$ ml2p dataset ls boston-20200901

It is also possible to generate a dataset by implementing a subclass of
ml2p.core.ModelDatasetGenerator. The subclass needs to define a
.generate(…) method that will generate the dataset and store it.

A simple implementation for the Boston house price dataset generator
can be found in model.py:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

	# -*- coding: utf-8 -*-

""" A model for predicting Boston house prices (part of the ML2P tutorial).
"""

import jsonpickle
import pandas as pd
from sklearn.linear_model import LinearRegression
from sklearn.model_selection import train_test_split

from ml2p.core import Model, ModelDatasetGenerator, ModelPredictor, ModelTrainer

from .create_boston_prices_csv import write_boston_csv

class BostonDatasetGenerator(ModelDatasetGenerator):
 def generate(self):
 """Generate and store the dataset."""
 write_boston_csv("house-prices.csv")
 self.upload_to_s3("house-prices.csv")

class BostonTrainer(ModelTrainer):
 def train(self):
 """Train the model."""
 training_channel = self.env.dataset_folder()
 training_csv = str(training_channel / "house-prices.csv")
 df = pd.read_csv(training_csv)
 y = df["target"]
 X = df.drop(columns="target")
 features = sorted(X.columns)
 X = X[features]
 X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=0)
 model = LinearRegression().fit(X_train, y_train)
 with (self.env.model_folder() / "boston-model.json").open("w") as f:
 f.write(jsonpickle.encode({"model": model, "features": features}))

class BostonPredictor(ModelPredictor):
 def setup(self):
 """Load the model."""
 with (self.env.model_folder() / "boston-model.json").open("r") as f:
 data = jsonpickle.decode(f.read())
 self.model = data["model"]
 self.features = data["features"]

 def result(self, data):
 """Perform a prediction on the given data and return the result.

 :param dict data:
 The data to perform the prediction on.

 :returns dict:
 The result of the prediction.
 """
 X = pd.DataFrame([data])
 X = X[self.features]
 price = self.model.predict(X)[0]
 return {"predicted_price": price}

class BostonModel(Model):

 TRAINER = BostonTrainer
 PREDICTOR = BostonPredictor

The dataset can then be generated using the following command:

$ ml2p dataset generate boston-20200901 --model-type boston

Training a model

You’ll need to start by implementing a subclass of ml2p.core.ModelTrainer.
Your subclass needs to define a .train(…) method that will load the
training set, train the model, and save it.

A simple implementation for the Boston house price model can be found in
model.py:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

	# -*- coding: utf-8 -*-

""" A model for predicting Boston house prices (part of the ML2P tutorial).
"""

import jsonpickle
import pandas as pd
from sklearn.linear_model import LinearRegression
from sklearn.model_selection import train_test_split

from ml2p.core import Model, ModelDatasetGenerator, ModelPredictor, ModelTrainer

from .create_boston_prices_csv import write_boston_csv

class BostonDatasetGenerator(ModelDatasetGenerator):
 def generate(self):
 """Generate and store the dataset."""
 write_boston_csv("house-prices.csv")
 self.upload_to_s3("house-prices.csv")

class BostonTrainer(ModelTrainer):
 def train(self):
 """Train the model."""
 training_channel = self.env.dataset_folder()
 training_csv = str(training_channel / "house-prices.csv")
 df = pd.read_csv(training_csv)
 y = df["target"]
 X = df.drop(columns="target")
 features = sorted(X.columns)
 X = X[features]
 X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=0)
 model = LinearRegression().fit(X_train, y_train)
 with (self.env.model_folder() / "boston-model.json").open("w") as f:
 f.write(jsonpickle.encode({"model": model, "features": features}))

class BostonPredictor(ModelPredictor):
 def setup(self):
 """Load the model."""
 with (self.env.model_folder() / "boston-model.json").open("r") as f:
 data = jsonpickle.decode(f.read())
 self.model = data["model"]
 self.features = data["features"]

 def result(self, data):
 """Perform a prediction on the given data and return the result.

 :param dict data:
 The data to perform the prediction on.

 :returns dict:
 The result of the prediction.
 """
 X = pd.DataFrame([data])
 X = X[self.features]
 price = self.model.predict(X)[0]
 return {"predicted_price": price}

class BostonModel(Model):

 TRAINER = BostonTrainer
 PREDICTOR = BostonPredictor

The training data should be read from self.env.dataset_folder(). This is the
folder that SageMaker will load your training dataset into.

Once the model is trained, you should write your output files to
self.env.model_folder(). SageMaker will read the contents of this folder once
training has finished and store them as a .tar.gz file in S3.

Before you train your model in SageMaker, you can try it locally
as shown in local.py:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34

	# -*- coding: utf-8 -*-

""" Train the Boston house prices model on your local machine.
"""

import pandas as pd
from ml2p.core import LocalEnv
import model

def train(env):
 """ Train and save the model locally. """
 trainer = model.BostonModel().trainer(env)
 trainer.train()

def predict(env):
 """ Load a model and make predictions locally. """
 predictor = model.BostonModel().predictor(env)
 predictor.setup()
 data = pd.read_csv("house-prices.csv")
 house = dict(data.iloc[0])
 del house["target"]
 print("Making a prediction for:")
 print(house)
 result = predictor.invoke(house)
 print("Prediction:")
 print(result)

if __name__ == "__main__":
 env = LocalEnv(".", "ml2p.yml")
 train(env)
 predict(env)

ML2P provides ml2p.core.LocalEnv which you can use to emulate a real SageMaker
environment. SageMaker will read the training data from input/data/training/
so you will need to place a copy of house-prices.csv there for the
script to run successfully.

Later in the tutorial you will learn how to download a dataset directly from
S3 for use in a local environment.

Once your model works locally, you are ready to train it in SageMaker by
creating a training job with:

$ ml2p training-job create boston-train boston-20200901 --model-type boston

The first argument is the name of the training job, the second is the name of the
dataset. You will need to have uploaded some training data. The –model-type
argument is optional – if you have only a single model defined in ml2p.yml,
ML2P will automatically select that one for you.

Wait for your training job to finish. To check up on it you can run:

$ ml2p training-job wait boston-train # wait for job to finish
$ ml2p training-job describe boston-train # inspect job

Once your training job is done, there is one more step. The training job
records the trained model parameters, but we also need to specify the Docker
image that should be used along with those parameters. We do this by creating a
SageMaker model from the output of the training job:

$ ml2p model create boston-model boston-train --model-type boston

The first argument is the name of the model to create, the second is the training job
the model should be created from.

The Docker image to use is read from the image parameter in ml2p.yml so
you don’t have to specify it here.

The model is just an object in SageMaker – it doesn’t run any instances – so it will be
created immediately.

Now it’s time to deploy your model by creating an endpoint for it!

Deploying a model

To deploy a model you’ll need to implement a subclass of ml2p.core.ModelPredictor.

You might have seen the implementation for the Boston house price model in
model.py while looking at the code for training, but here it is again:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

	# -*- coding: utf-8 -*-

""" A model for predicting Boston house prices (part of the ML2P tutorial).
"""

import jsonpickle
import pandas as pd
from sklearn.linear_model import LinearRegression
from sklearn.model_selection import train_test_split

from ml2p.core import Model, ModelDatasetGenerator, ModelPredictor, ModelTrainer

from .create_boston_prices_csv import write_boston_csv

class BostonDatasetGenerator(ModelDatasetGenerator):
 def generate(self):
 """Generate and store the dataset."""
 write_boston_csv("house-prices.csv")
 self.upload_to_s3("house-prices.csv")

class BostonTrainer(ModelTrainer):
 def train(self):
 """Train the model."""
 training_channel = self.env.dataset_folder()
 training_csv = str(training_channel / "house-prices.csv")
 df = pd.read_csv(training_csv)
 y = df["target"]
 X = df.drop(columns="target")
 features = sorted(X.columns)
 X = X[features]
 X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=0)
 model = LinearRegression().fit(X_train, y_train)
 with (self.env.model_folder() / "boston-model.json").open("w") as f:
 f.write(jsonpickle.encode({"model": model, "features": features}))

class BostonPredictor(ModelPredictor):
 def setup(self):
 """Load the model."""
 with (self.env.model_folder() / "boston-model.json").open("r") as f:
 data = jsonpickle.decode(f.read())
 self.model = data["model"]
 self.features = data["features"]

 def result(self, data):
 """Perform a prediction on the given data and return the result.

 :param dict data:
 The data to perform the prediction on.

 :returns dict:
 The result of the prediction.
 """
 X = pd.DataFrame([data])
 X = X[self.features]
 price = self.model.predict(X)[0]
 return {"predicted_price": price}

class BostonModel(Model):

 TRAINER = BostonTrainer
 PREDICTOR = BostonPredictor

The .setup() method is called only once when starting up a prediction instance.
It should read the model from self.env.model_folder() – SageMaker will have
placed them in the same location where they were stored while running .train().
Other kinds of setup can be done in this function too if you need to.

The .result(data) method is called when a prediction needs to be made. It will
be passed the data that was sent to the prediction API endpoint (usually a
dictionary with the features as the keys) and should return the prediction.

As you can see in local.py, .result() is usually not called directly. Instead,
when a prediction needs to be made, ML2P will call .invoke(), which will
then call .result() and add some metadata to the result before returning it.

If you ran local.py earlier, you’ve already successfully run a local prediction.

Once you’re ready to deploy your model, you can create an endpoint by running:

$ ml2p endpoint create boston-endpoint --model-name boston-model

The first argument is the name of the endpoint to create, the second is the name of
the model to create the endpoint from.

Note that endpoints can be quite expensive to run, so check the pricing for the
instance type you have specified before pressing enter!

Setting up the endpoint takes awhile. To check up on it you can run:

$ ml2p endpoint wait boston-endpoint # wait for endpoint to be ready
$ ml2p endpoint describe boston-endpoint # inspect endpoint

Once the endpoint is ready, your model is deployed!

You can make a test prediction using:

$ ml2p endpoint invoke boston-endpoint '{"CRIM": 0.00632, "ZN": 18.0, "INDUS": 2.31, "CHAS": 0.0, "NOX": 0.5379999999999999, "RM": 6.575, "AGE": 65.2, "DIS": 4.09, "RAD": 1.0, "TAX": 296.0, "PTRATIO": 15.3, "B": 396.9, "LSTAT": 4.98}'

Congratulations! You have trained and deployed your first model using ML2P!

Security considerations

ML2P runs inside SageMaker, so authentication and authorization of prediction
requests is managed using AWS IAM profiles and roles, but there are still
some important things to consider:

Roles

The role in ml2p.yml defines the permissions your training jobs and
endpoints will assume while they run. Best practice is to have a role
specific to each ML2P project and for that role to have only the permissions
it requires.

VPCs

By default, SageMaker instances run outside of any AWS VPC. This means that
the instances access other AWS services (e.g. downloading training data or a
stored model from S3) via the public internet address of the service (the
connection is encrypted and authenticated as usual) and that they have no
special access to any other services you might be running inside a VPC.

You can attach your SageMaker instances to a VPC by specifying a
vpc_config:

vpc_config:
 security_groups:
 - "sg-XXXX"
 subnets:
 - "net-YYYY"

This will do two things.

Firstly, it will allow your SageMaker instances to
access instances within the VPC (according to the subnet and security group
rules).

Secondly, it will prevent your SageMaker instances from accessing
the public internet (unless allowed to by the security group or subnet rules).
This second point means you may have to configure a VPC Endpoint to allow
your SageMaker instances to access other AWS services such as S3.

You can read more on how to Give Endpoints Access to Resources in Your VPC [https://docs.aws.amazon.com/sagemaker/latest/dg/host-vpc.html]
and how to Give Training Jobs Access to Resources in Your VPC [https://docs.aws.amazon.com/sagemaker/latest/dg/train-vpc.html] in the AWS
SageMaker documentation.

Prediction web requests

While your SageMaker instance is likely protected from unauthorised access,
like any web API care should be taken when handling untrusted data. This
includes any fields passed to the model that can be manipulated by an
untrusted party (including, for example, emails or other text from customers).

Working with models locally

At times it may be convenient to work with ML2P models on a local machine, rather than
within SageMaker. ML2P supports both training models locally and loading models trained
in SageMaker for local analysis.

In either case, first create a local environment:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10

	# set up a connection to AWS, specifying an appropriate AWS profile name:
import boto3
session = boto3.session.Session(profile_name="aws-profile")

create a local environment
from ml2p.core import LocalEnv
env = LocalEnv(".", "./ml2p.yml", session)

import your ml2p model class:
from model import BostonModel

The first argument to LocalEnv is the local folder to store the environment
in, and the second is the path to the ml2p.yml config file for the project.

The third argument, session, is an optional boto3 session and is only needed
if you wish to download datasets or models from S3 to your local environment.

To download a dataset from S3 into the local environment used:

env.download_dataset("dataset-name")

If you prefer not to download a dataset, you can also copy a local file into:

input/data/training/

For example, for this tutorial it may be useful to copy the house-prices.csv
training file into this folder using:

$ mkdir -p input/data/training/
$ cp house-prices.csv input/data/training/

Once you have a dataset you can train a model locally using:

env.clean_model_folder()
trainer = BostonModel().trainer(env)
trainer.train()

The first line, env.clean_model_folder() just deletes any old files created
by previous local training runs.

You can list the model files created during training using:

$ ls model/

If you have already trained a model in SageMaker with ml2p create training-job
and would like to examine it locally you can download it into the model folder
by running:

env.download_model("training-job-name")

Once you have a model available locally, either by training it locally or by
downloading it, you can make predictions with:

predictor = BostonModel().predictor(env)
predictor.setup()
predictor.invoke(data)

Happy local analyzing and debugging!

Reference Guide

	ML2P CLI Reference

	ML2P Docker CLI Reference

	Library Reference

ML2P CLI Reference

ml2p

Minimal Lovable Machine Learning Pipeline.

A friendlier interface to AWS SageMaker.

ml2p [OPTIONS] COMMAND [ARGS]...

Options

	
--cfg <cfg>

	Project configuration file. Default: ./ml2p.yml.

	
--version

	Show the version and exit.

dataset

Create and manage datasets.

ml2p dataset [OPTIONS] COMMAND [ARGS]...

create

Create a dataset.

ml2p dataset create [OPTIONS] DATASET

Arguments

	
DATASET

	Required argument

delete

Delete a dataset.

ml2p dataset delete [OPTIONS] DATASET

Arguments

	
DATASET

	Required argument

dn

Download a file SRC from the dataset and save it in DST.

If DST is omitted, the source file is downloaded as its own name.

ml2p dataset dn [OPTIONS] DATASET SRC [DST]

Arguments

	
DATASET

	Required argument

	
SRC

	Required argument

	
DST

	Optional argument

generate

Launch a processing job that generates a dataset.

ml2p dataset generate [OPTIONS] DATASET

Options

	
-m, --model-type <model_type>

	The name of the type of model.

Arguments

	
DATASET

	Required argument

list

List datasets for this project.

ml2p dataset list [OPTIONS]

ls

List the contents of a dataset.

ml2p dataset ls [OPTIONS] DATASET

Arguments

	
DATASET

	Required argument

rm

Delete a file from a dataset.

ml2p dataset rm [OPTIONS] DATASET FILENAME

Arguments

	
DATASET

	Required argument

	
FILENAME

	Required argument

up

Upload a file SRC to a dataset as DST.

If DST is omitted, the source file is uploaded under its own name.

ml2p dataset up [OPTIONS] DATASET SRC [DST]

Arguments

	
DATASET

	Required argument

	
SRC

	Required argument

	
DST

	Optional argument

endpoint

Create and inspect endpoints.

ml2p endpoint [OPTIONS] COMMAND [ARGS]...

create

Create an endpoint for a model.

ml2p endpoint create [OPTIONS] ENDPOINT_NAME

Options

	
-m, --model-name <model_name>

	The name of the model to base the endpoint on. Defaults to the endpoint name without the live/analysis/test suffix.

Arguments

	
ENDPOINT_NAME

	Required argument

delete

Delete an endpoint.

ml2p endpoint delete [OPTIONS] ENDPOINT_NAME

Arguments

	
ENDPOINT_NAME

	Required argument

describe

Describe an endpoint.

ml2p endpoint describe [OPTIONS] ENDPOINT_NAME

Arguments

	
ENDPOINT_NAME

	Required argument

invoke

Invoke an endpoint (i.e. make a prediction).

ml2p endpoint invoke [OPTIONS] ENDPOINT_NAME JSON_DATA

Arguments

	
ENDPOINT_NAME

	Required argument

	
JSON_DATA

	Required argument

list

List endpoints for this project.

ml2p endpoint list [OPTIONS]

wait

Wait for an endpoint to be ready or dead.

ml2p endpoint wait [OPTIONS] ENDPOINT_NAME

Arguments

	
ENDPOINT_NAME

	Required argument

init

Initialize the project S3 bucket.

ml2p init [OPTIONS]

model

Create and inspect models.

ml2p model [OPTIONS] COMMAND [ARGS]...

create

Create a model.

ml2p model create [OPTIONS] MODEL_NAME

Options

	
-t, --training-job <training_job>

	The name of the training job to base the model on. Defaults to the model name without the patch version number.

	
-m, --model-type <model_type>

	The name of the type of model.

Arguments

	
MODEL_NAME

	Required argument

delete

Delete a model.

ml2p model delete [OPTIONS] MODEL_NAME

Arguments

	
MODEL_NAME

	Required argument

describe

Describe a model.

ml2p model describe [OPTIONS] MODEL_NAME

Arguments

	
MODEL_NAME

	Required argument

list

List models for this project.

ml2p model list [OPTIONS]

notebook

Create and manage notebooks.

ml2p notebook [OPTIONS] COMMAND [ARGS]...

create

Create a notebook instance.

ml2p notebook create [OPTIONS] NOTEBOOK_NAME

Arguments

	
NOTEBOOK_NAME

	Required argument

delete

Delete a notebook instance.

ml2p notebook delete [OPTIONS] NOTEBOOK_NAME

Arguments

	
NOTEBOOK_NAME

	Required argument

describe

Describe a notebook instance.

ml2p notebook describe [OPTIONS] NOTEBOOK_NAME

Arguments

	
NOTEBOOK_NAME

	Required argument

list

ml2p notebook list [OPTIONS]

presigned-url

Create a URL to connect to the Jupyter server from a notebook instance.

ml2p notebook presigned-url [OPTIONS] NOTEBOOK_NAME

Arguments

	
NOTEBOOK_NAME

	Required argument

start

Start a notebook instance.

ml2p notebook start [OPTIONS] NOTEBOOK_NAME

Arguments

	
NOTEBOOK_NAME

	Required argument

stop

Stop a notebook instance.

ml2p notebook stop [OPTIONS] NOTEBOOK_NAME

Arguments

	
NOTEBOOK_NAME

	Required argument

repo

Describe and list code repositories.

ml2p repo [OPTIONS] COMMAND [ARGS]...

describe

Describe a code repository SageMaker resource.

ml2p repo describe [OPTIONS] REPO_NAME

Arguments

	
REPO_NAME

	Required argument

list

List code repositories.

ml2p repo list [OPTIONS]

training-job

Create and inspect training jobs.

ml2p training-job [OPTIONS] COMMAND [ARGS]...

create

Create a training job.

ml2p training-job create [OPTIONS] TRAINING_JOB DATASET

Options

	
-m, --model-type <model_type>

	The name of the type of model.

Arguments

	
TRAINING_JOB

	Required argument

	
DATASET

	Required argument

describe

Describe a training job.

ml2p training-job describe [OPTIONS] TRAINING_JOB

Arguments

	
TRAINING_JOB

	Required argument

list

List training jobs for this project.

ml2p training-job list [OPTIONS]

wait

Wait for a training job to complete or stop.

ml2p training-job wait [OPTIONS] TRAINING_JOB

Arguments

	
TRAINING_JOB

	Required argument

ML2P Docker CLI Reference

ml2p-docker

ML2P Sagemaker Docker container helper CLI.

ml2p-docker [OPTIONS] COMMAND [ARGS]...

Options

	
--ml-folder <ml_folder>

	The base folder for the datasets and models.

	
--model <model>

	The fully qualified name of the ML2P model interface to use.

	
--version

	Show the version and exit.

generate-dataset

Generates a dataset for training the model.

ml2p-docker generate-dataset [OPTIONS]

serve

Serve the model and make predictions.

ml2p-docker serve [OPTIONS]

Options

	
--debug, --no-debug

	

train

Train the model.

ml2p-docker train [OPTIONS]

Library Reference

ML2P Core

ML2P core utilities.

Models

	
class ml2p.core.Model

	A holder for dataset generator, trainer and predictor.

Sub-classes should:

	Set the attribute DATASET_GENERATOR to a ModelDatasetGenerator sub-class.

	Set the attribute TRAINER to a ModelTrainer sub-class.

	Set the attribute PREDICTOR to a ModelPredictor sub-class.

	
class ml2p.core.ModelTrainer(env)

	An interface that allows ml2p-docker to train models within SageMaker.

	
train()

	Train the model.

This method should:

	Read training data (using self.env to determine where to read data from).

	Train the model.

	Write the model out (using self.env to determine where to write the model
to).

	Write out any validation or model analysis alongside the model.

	
class ml2p.core.ModelPredictor(env)

	An interface that allows ml2p-docker to make predictions from a model within
SageMaker.

	
batch_invoke(data)

	Invokes the model on a batch of input data and returns the full result for
each instance.

	Parameters

	data (dict) – The batch of input data the model is being invoked with.

	Return type

	list

	Returns

	The result as a list of dictionaries.

By default this method results a list of dictionaries containing:

	metadata: The result of calling .metadata().

	result: The result of calling .batch_result(data).

	
batch_result(data)

	Make a batch prediction given a batch of input data.

	Parameters

	data (dict) – The batch of input data to make a prediction from.

	Return type

	list

	Returns

	The list of predictions made for instance of the input data.

This method can be overrided for sub-classes in order to improve
performance of batch predictions.

	
invoke(data)

	Invokes the model and returns the full result.

	Parameters

	data (dict) – The input data the model is being invoked with.

	Return type

	dict

	Returns

	The result as a dictionary.

By default this method results a dictionary containing:

	metadata: The result of calling .metadata().

	result: The result of calling .result(data).

	
metadata()

	Return metadata for a prediction that is about to be made.

	Return type

	dict

	Returns

	The metadata as a dictionary.

By default this method returns a dictionary containing:

	model_version: The ML2P_MODEL_VERSION (str).

	timestamp: The UTC POSIX timestamp in seconds (float).

	
record_invoke(datum, prediction)

	Store an invocation of the endpoint in the ML2P project S3 bucket.

	Parameters

	
	datum (dict) – The dictionary of input values passed when invoking the endpoint.

	result (dict) – The prediction returned for datum by this predictor.

	
record_invoke_id(datum, prediction)

	Return an id for an invocation record.

	Parameters

	
	datum (dict) – The dictionary of input values passed when invoking the endpoint.

	result (dict) – The prediction returned for datum by this predictor.

	Returns dict

	Returns an ordered dictionary of key-value pairs that make up
the unique identifier for the invocation request.

By default this method returns a dictionary containing the following:

	“ts”: an ISO8601 formatted UTC timestamp.

	“uuid”: a UUID4 unique identifier.

Sub-classes may override this method to return their own identifiers,
but including these default identifiers is recommended.

The name of the record in S3 is determined by combining the key value pairs
with a dash (“-”) and then separating each pair with a double dash (”–“).

	
result(data)

	Make a prediction given the input data.

	Parameters

	data (dict) – The input data to make a prediction from.

	Return type

	dict

	Returns

	The prediction result as a dictionary.

	
setup()

	Called once before any calls to .predict(…) are made.

This method should:

	Load the model (using self.env to determine where to read the model from).

	Allocate any other resources needed in order to make predictions.

	
teardown()

	Called once after all calls to .predict(…) have ended.

This method should:

	Cleanup any resources acquired in .setup().

	
class ml2p.core.ModelDatasetGenerator(env)

	An interface that allows ml2p-docker to generate a dataset within SageMaker.

	
generate()

	Generates and stores a dataset to S3.

This method should:

	Read data from source (e.g. S3, Redshift, …).

	Process the dataset.

	Write the dataset to S3 (using self.env to determine where to write the data
to).

	
upload_to_s3(file_path)

	Uploads the file to the S3 dataset folder

	:param str file_path”
	The path of the file to upload to S3.

SageMakerEnv

	
class ml2p.core.SageMakerEnv(ml_folder, environ=None)

	An interface to the SageMaker docker environment.

Attributes that are expected to be available in both training and serving
environments:

	env_type - Whether this is a training, serving or local environment
(type: ml2p.core.SageMakerEnvType).

	project - The ML2P project name (type: str).

	model_cls - The fulled dotted Python name of the ml2p.core.Model class to
be used for training and prediction (type: str). This may be None if the
docker image itself specifies the name with ml2p-docker –model ….

	s3 - The URL of the project S3 bucket (type: ml2p.core.S3URL).

Attributes that are only expected to be available while training (and that will
be None when serving the model):

	training_job_name - The full job name of the training job (type: str).

Attributes that are only expected to be available while serving the model (and
that will be None when serving the model):

	model_version - The full job name of the deployed model, or None
during training (type: str).

	record_invokes - Whether to store a record of each invocation of the
endpoint in S3 (type: bool).

In the training environment settings are loaded from hyperparameters stored by
ML2P when the training job is created.

In the serving environment settings are loaded from environment variables stored
by ML2P when the model is created.

	
class ml2p.core.SageMakerEnvType

	The type of SageMakerEnvironment.

	
DATASET = 'dataset'

	

	
TRAIN = 'train'

	

	
SERVE = 'serve'

	

	
LOCAL = 'local'

	

LocalEnv

	
class ml2p.core.LocalEnv(ml_folder, cfg, session=None)

	An interface to a local dummy of the SageMaker environment.

	Parameters

	
	ml_folder (str) – The directory the environments files are stored in. An
error is raised if this directory does not exist. Files
and folders are created within this directory as needed.

	cfg (str) – The path to an ml2p.yml configuration file.

	session (boto3.session.Session) – A boto3 session object. Maybe be None if downloading files from
S3 is not required.

Attributes that are expected to be available in the local environment:

	env_type - Whether this is a training, serving or local environment
(type: ml2p.core.SageMakerEnvType).

	project - The ML2P project name (type: str).

	s3 - The URL of the project S3 bucket (type: ml2p.core.S3URL).

	model_version - The fixed value “local” (type: str).

In the local environment settings are loaded directly from the ML2P
configuration file.

	
clean_model_folder()

	Remove and recreate the model folder.

This is useful to run before training a model if one wants to ensure
that the model folder is empty beforehand.

	
download_dataset(dataset)

	Download the given dataset from S3 into the local environment.

	Parameters

	dataset (str) – The name of the dataset in S3 to download.

	
download_model(training_job)

	Download the given trained model from S3 and unpack it into the local
environment.

	Parameters

	training_job (str) – The name of the training job whose model should be downloaded.

S3URL

	
class ml2p.core.S3URL(s3folder)

	A friendly interface to an S3 URL.

	
bucket()

	Return the bucket of the S3 URL.

	Return type

	str

	Returns

	The bucket of the S3 URL.

	
path(suffix)

	Return the base path of the S3 URL followed by a ‘/’ and the
given suffix.

	Parameters

	suffix (str) – The suffix to append.

	Return type

	str

	Returns

	The path with the suffix appended.

	
url(suffix='')

	Return S3 URL followed by a ‘/’ and the given suffix.

	Parameters

	suffix (str) – The suffix to append. Default: “”.

	Return type

	str

	Returns

	The URL with the suffix appended.

History

0.3.5 (2023-05-16)

	Pin Flask version.

0.3.4 (2023-02-24)

	Ensure that logging is passed to SageMaker logs.

0.3.3 (2023-02-17)

	Fix release.

0.3.2 (2023-02-17)

	Fix dataset name.

0.3.1 (2023-02-17)

	Disable network isolation for generating datasets.

	Change order in which notebooks resources are deleted.

0.3.0 (2023-02-16)

	Replace Sagefaker by moto sagemaker client to mock sagemaker.

	Refactor CLI commands.

	Add ml2p dataset generate command to generate datasets using the CLI.

	Add ModelDatasetGenerator class.

	Simplify how environment variables are passed to training job.

	Add ml2p-docker generate-dataset command.

	Update documentation.

0.2.4 (2022-02-21)

	Unpin all dependencies to stay up to date with Pallets packages.

0.2.3 (2021-07-12)

	Added the on-create feature to notebook servers.

0.2.2 (2021-05-18)

	Pinned Flask to a stable version.

0.2.1 (2021-05-13)

	Pinned Flask, Flask-API and click.

0.2.0 (2020-09-16)

	Added reference documentation.

	Added a tutorial.

	Added tests for the ML2P command line utilities.

	Added support for attaching training and deployment instances to VPCs.

	Open sourced ML2P under the ISCL.

0.1.5 (2020-06-12)

	Added ml2p dataset delete which deletes an entire dataset.

	Added ml2p dataset ls which lists the contents of a dataset.

	Added ml2p dataset up which uploads a local file to a dataset.

	Added ml2p dataset dn which downloads a file from a dataset.

	Added ml2p dataset rm which deletes a file from a dataset.

0.1.4 (2020-02-21)

	Correctly handle folder keys when downloading datasets from S3. Previously folder
keys created files, now they created folders.

0.1.3 (2020-02-20)

	Added support for local environments. These allow ML2P models to be trained and used
to make predictions locally, as though they were being loaded in SageMaker.

	Added support for downloading datasets and models from S3 into local environments.

0.1.2 (2020-01-23)

	Fix support for recording predictions in S3 (in first release of this feature, the code
attempted to pass a boolean value as an environment variable, which failed as expected).

0.1.1 (2020-01-22)

	Add support for recording predictions in S3.

0.1.0 (2019-10-22)

	Improve batch prediction support to allow models to separately implement batch
prediction (e.g. a model might want to implement batch prediction separately to
improve performance).

	Tweak training job version format to only include major and minor versions numbers.
Patch version numbers are now reserved for models and intended for use in the case
where the code used to make predictions changes but the underlying model is the same.

	Model creation now defaults to using the training job with the same version as the model
but with the patch number removed.

	Endpoint creation now defaults to using the model with the same version as the endpoint.

	When creating training jobs or models, specifying the model type is now required if
the ml2p configuration file contains more than one model. If there is exactly one model
type listed, that is the default. If there are no model types, the docker file
must specify the model on the command line.

	Metadata returned by predictions now includes the ML2P version number.

	Version bumped to 0.1.0 now that versioning support is complete(-ish).

0.0.9 (2019-10-15)

	Add support for client and server error exception handling.

	Deprecate passing a channel name to dataset_folder and add a new data_channel_folder
method to allow data in other channels to be accessed.

	Add dataset create and list commands to ml2p CLI.

	Add –version to ml2p and ml2p-docker CLIs.

	Allow model and endpoint version numbers to be multiple digits.

0.0.8 (2019-09-11)

	Added validation of naming convention

0.0.7 (2019-08-29)

	Added Sphinx requirements to build file.

0.0.6 (2019-08-29)

	Cleaned up support for passing ML2P environment data into training jobs and
model deployments. Environment settings such as the S3 URL and the project name
are now passed into training jobs via hyperparameters and into model deployments
via model environment variables.

	Added support for training and serving multiple models using the same docker
image by optionally passing the model to use into training jobs and endpoint
deployments.

	Added support for rich hyperparameters. This sidesteps SageMaker API’s limited
hyperparameter support (it only supports string values) by encoding any
JSON-compatible Python dictionary to a flattened formed and then decoding
it when it is read by the training job.

	Added skeleton for Sphinx documentation.

	Removed old pre-0.0.1 example files.

0.0.5 (2019-07-23)

	Disabled direct internet access from notebooks by default.

	Added tests for cli_utils.

0.0.4 (2019-06-26)

	Fixed bug in setting of ML2P_S3_URL on model creation.

0.0.3 (2019-06-26)

	Added new ml2p notebook command group for creating, inspecting,
and deleting SageMaker Notebook instances.

	Added new ml2p repo command group for inspecting code repository SageMaker resources.

0.0.2 (2019-05-24)

	Complete re-write.

	Added new ml2p-docker command added that assists with training and deploying models
in SageMaker.

0.0.1 (2018-10-19)

	Initial hackathon release.

 Python Module Index

 m

 		 	

 		
 m	

 	[image: -]
 	
 ml2p	

 	
 	
 ml2p.core	

Index

 Symbols
 | B
 | C
 | D
 | E
 | F
 | G
 | I
 | J
 | L
 | M
 | N
 | P
 | R
 | S
 | T
 | U

Symbols

 	
 	
 --cfg <cfg>

 	ml2p command line option

 	
 --debug

 	ml2p-docker-serve command line option

 	
 --ml-folder <ml_folder>

 	ml2p-docker command line option

 	
 --model <model>

 	ml2p-docker command line option

 	
 --model-name <model_name>

 	ml2p-endpoint-create command line option

 	
 --model-type <model_type>

 	ml2p-dataset-generate command line option

 	ml2p-model-create command line option

 	ml2p-training-job-create command line option

 	
 	
 --no-debug

 	ml2p-docker-serve command line option

 	
 --training-job <training_job>

 	ml2p-model-create command line option

 	
 --version

 	ml2p command line option

 	ml2p-docker command line option

 	
 -m

 	ml2p-dataset-generate command line option

 	ml2p-endpoint-create command line option

 	ml2p-model-create command line option

 	ml2p-training-job-create command line option

 	
 -t

 	ml2p-model-create command line option

B

 	
 	batch_invoke() (ml2p.core.ModelPredictor method)

 	
 	batch_result() (ml2p.core.ModelPredictor method)

 	bucket() (ml2p.core.S3URL method)

C

 	
 	clean_model_folder() (ml2p.core.LocalEnv method)

D

 	
 	
 DATASET

 	ml2p-dataset-create command line option

 	ml2p-dataset-delete command line option

 	ml2p-dataset-dn command line option

 	ml2p-dataset-generate command line option

 	ml2p-dataset-ls command line option

 	ml2p-dataset-rm command line option

 	ml2p-dataset-up command line option

 	ml2p-training-job-create command line option

 	
 	DATASET (ml2p.core.SageMakerEnvType attribute)

 	download_dataset() (ml2p.core.LocalEnv method)

 	download_model() (ml2p.core.LocalEnv method)

 	
 DST

 	ml2p-dataset-dn command line option

 	ml2p-dataset-up command line option

E

 	
 	
 ENDPOINT_NAME

 	ml2p-endpoint-create command line option

 	ml2p-endpoint-delete command line option

 	ml2p-endpoint-describe command line option

 	ml2p-endpoint-invoke command line option

 	ml2p-endpoint-wait command line option

F

 	
 	
 FILENAME

 	ml2p-dataset-rm command line option

G

 	
 	generate() (ml2p.core.ModelDatasetGenerator method)

I

 	
 	invoke() (ml2p.core.ModelPredictor method)

J

 	
 	
 JSON_DATA

 	ml2p-endpoint-invoke command line option

L

 	
 	LOCAL (ml2p.core.SageMakerEnvType attribute)

 	
 	LocalEnv (class in ml2p.core)

M

 	
 	metadata() (ml2p.core.ModelPredictor method)

 	
 ml2p command line option

 	--cfg <cfg>

 	--version

 	
 ml2p-dataset-create command line option

 	DATASET

 	
 ml2p-dataset-delete command line option

 	DATASET

 	
 ml2p-dataset-dn command line option

 	DATASET

 	DST

 	SRC

 	
 ml2p-dataset-generate command line option

 	--model-type <model_type>

 	-m

 	DATASET

 	
 ml2p-dataset-ls command line option

 	DATASET

 	
 ml2p-dataset-rm command line option

 	DATASET

 	FILENAME

 	
 ml2p-dataset-up command line option

 	DATASET

 	DST

 	SRC

 	
 ml2p-docker command line option

 	--ml-folder <ml_folder>

 	--model <model>

 	--version

 	
 ml2p-docker-serve command line option

 	--debug

 	--no-debug

 	
 ml2p-endpoint-create command line option

 	--model-name <model_name>

 	-m

 	ENDPOINT_NAME

 	
 ml2p-endpoint-delete command line option

 	ENDPOINT_NAME

 	
 ml2p-endpoint-describe command line option

 	ENDPOINT_NAME

 	
 ml2p-endpoint-invoke command line option

 	ENDPOINT_NAME

 	JSON_DATA

 	
 	
 ml2p-endpoint-wait command line option

 	ENDPOINT_NAME

 	
 ml2p-model-create command line option

 	--model-type <model_type>

 	--training-job <training_job>

 	-m

 	-t

 	MODEL_NAME

 	
 ml2p-model-delete command line option

 	MODEL_NAME

 	
 ml2p-model-describe command line option

 	MODEL_NAME

 	
 ml2p-notebook-create command line option

 	NOTEBOOK_NAME

 	
 ml2p-notebook-delete command line option

 	NOTEBOOK_NAME

 	
 ml2p-notebook-describe command line option

 	NOTEBOOK_NAME

 	
 ml2p-notebook-presigned-url command line option

 	NOTEBOOK_NAME

 	
 ml2p-notebook-start command line option

 	NOTEBOOK_NAME

 	
 ml2p-notebook-stop command line option

 	NOTEBOOK_NAME

 	
 ml2p-repo-describe command line option

 	REPO_NAME

 	
 ml2p-training-job-create command line option

 	--model-type <model_type>

 	-m

 	DATASET

 	TRAINING_JOB

 	
 ml2p-training-job-describe command line option

 	TRAINING_JOB

 	
 ml2p-training-job-wait command line option

 	TRAINING_JOB

 	ml2p.core (module)

 	Model (class in ml2p.core)

 	
 MODEL_NAME

 	ml2p-model-create command line option

 	ml2p-model-delete command line option

 	ml2p-model-describe command line option

 	ModelDatasetGenerator (class in ml2p.core)

 	ModelPredictor (class in ml2p.core)

 	ModelTrainer (class in ml2p.core)

N

 	
 	
 NOTEBOOK_NAME

 	ml2p-notebook-create command line option

 	ml2p-notebook-delete command line option

 	ml2p-notebook-describe command line option

 	ml2p-notebook-presigned-url command line option

 	ml2p-notebook-start command line option

 	ml2p-notebook-stop command line option

P

 	
 	path() (ml2p.core.S3URL method)

R

 	
 	record_invoke() (ml2p.core.ModelPredictor method)

 	record_invoke_id() (ml2p.core.ModelPredictor method)

 	
 	
 REPO_NAME

 	ml2p-repo-describe command line option

 	result() (ml2p.core.ModelPredictor method)

S

 	
 	S3URL (class in ml2p.core)

 	SageMakerEnv (class in ml2p.core)

 	SageMakerEnvType (class in ml2p.core)

 	SERVE (ml2p.core.SageMakerEnvType attribute)

 	
 	setup() (ml2p.core.ModelPredictor method)

 	
 SRC

 	ml2p-dataset-dn command line option

 	ml2p-dataset-up command line option

T

 	
 	teardown() (ml2p.core.ModelPredictor method)

 	TRAIN (ml2p.core.SageMakerEnvType attribute)

 	train() (ml2p.core.ModelTrainer method)

 	
 	
 TRAINING_JOB

 	ml2p-training-job-create command line option

 	ml2p-training-job-describe command line option

 	ml2p-training-job-wait command line option

U

 	
 	upload_to_s3() (ml2p.core.ModelDatasetGenerator method)

 	
 	url() (ml2p.core.S3URL method)

 nav.xhtml

 Table of Contents

 		
 Welcome to ml2p’s documentation!

 		
 Overview

 		
 Installation

 		
 Tutorial

 		
 Setting up your project

 		
 Initialize the ML2P project

 		
 Creating a training dataset

 		
 Training a model

 		
 Deploying a model

 		
 Security considerations

 		
 Roles

 		
 VPCs

 		
 Prediction web requests

 		
 Working with models locally

 		
 Reference Guide

 		
 ML2P CLI Reference

 		
 ml2p

 		
 ML2P Docker CLI Reference

 		
 ml2p-docker

 		
 Library Reference

 		
 ML2P Core

 		
 History

 		
 0.3.5 (2023-05-16)

 		
 0.3.4 (2023-02-24)

 		
 0.3.3 (2023-02-17)

 		
 0.3.2 (2023-02-17)

 		
 0.3.1 (2023-02-17)

 		
 0.3.0 (2023-02-16)

 		
 0.2.4 (2022-02-21)

 		
 0.2.3 (2021-07-12)

 		
 0.2.2 (2021-05-18)

 		
 0.2.1 (2021-05-13)

 		
 0.2.0 (2020-09-16)

 		
 0.1.5 (2020-06-12)

 		
 0.1.4 (2020-02-21)

 		
 0.1.3 (2020-02-20)

 		
 0.1.2 (2020-01-23)

 		
 0.1.1 (2020-01-22)

 		
 0.1.0 (2019-10-22)

 		
 0.0.9 (2019-10-15)

 		
 0.0.8 (2019-09-11)

 		
 0.0.7 (2019-08-29)

 		
 0.0.6 (2019-08-29)

 		
 0.0.5 (2019-07-23)

 		
 0.0.4 (2019-06-26)

 		
 0.0.3 (2019-06-26)

 		
 0.0.2 (2019-05-24)

 		
 0.0.1 (2018-10-19)

_static/plus.png

_static/file.png

_static/minus.png

